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Overview
• My Career Path 

• High-Energy Physics  

• Machine Learning  

• Combination Machine Learning and High-Energy Physics 



My Career Path
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I’m from Germany



I’m from Germany

(Yes, thats where the 
accent’s from)



Born in Nendingen (Tiny 
town in southern Germany)




Early Live
• Always interested in science 

• Did all the extra-curricular stuff during high 
school 

• “Engineering School” 

• “Robotics club” 

• “Convincing your physics teacher to spend 
a full lesson building a magnetic accelerator”



Early Live
• Coding 
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• Community college courses



Early Live
• Coding 

• After school coding classes 

• Coding camps 

• Community college courses 

• Modding video games



Undergrad: Northward to 
Heidelberg (less tiny town in 
southern Germany)



Undergrad
• Bachelors Thesis with Tilman 

Plehn in 2017 

• Phenomenologist at Institute 
for Theoretical Physics in 
Heidelberg 

• Dark Matter and LHC 
phenomenology and theory
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Undergrad
• Bachelors Thesis with Tilman 

Plehn in 2017 

• “There’s this new thing called 
Machine Learning, is that 
something you’d be 
interested in?” 

• “Nah” 

• Thesis on dark matter theory



Undergrad
• Masters Thesis with Tilman Plehn 

(again) in 2019 

• Whole group was doing 
machine learn by then



Undergrad
• Masters Thesis with Tilman Plehn 

(again) in 2019 

• Whole group was doing 
machine learn by then 

• Thesis on ML for classification in 
high energy physics 

• Wild West era of ML in HEP



Grad School: Further north 
to Hamburg (2nd larges city 
in Germany)



Grad School
• PhD thesis with Gregor Kasiezcka 

• CMS experimentalist at University of 
Hamburg



Grad School
• PhD thesis with Gregor Kasiezcka 

• CMS experimentalist at University of 
Hamburg 

• Dove deep into ML in HEP 

• Extremely fast developing field 

• Cutting edge research is exhilarating
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Postdoc: Further north (?) to 
Berkeley



Postdoc
• With Ben Nachman at LBL in 2023 (ATLAS experimentalist at LBL) 

• Jump further into experiment 

• Joined ATLAS experiment collaboration



Break for Questions
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High Energy Physics
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(Cooler phrase for particle physics)



High Energy Physics
• Studying the fundamental forces between the smallest existing 

particles 
• Describe them in mathematical terms 

• Define Hypothesis  
• Make prediction 
• Test prediction



High Energy Physics
• Basic example 

• Hypothesis: if this apple drops, 
it will follow a path described by
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High Energy Physics
• Basic example 

• Hypothesis: if this apple drops, 
it will follow a path described by

 

• Predict point on path 
• Measure real path and compare 

to prediction

x(t) = x0 −
1
2

gt2



High Energy Physics
• HEP example 

• Hypothesis: if I collide two 
particles at nearly the speed of 
light, they will interact based on 
this model



High Energy Physics
• HEP example 

• Make prediction of outcome
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High Energy Physics
• HEP example 

• Make prediction of outcome 
• Compare to experiment 

• Easy, right? Well… 



Colliding Particles is Hard
To reach the current energy 
frontier we had to: 
• Build a 27 km long 

synchrotron accelerator 
• Accelerate protons to 

99.9999991% the speed 
of light 

• Fine tune it to collide 
bunches with 2.5 
micrometer diameters



Detecting Particles is Hard
Collision products are 
• Tiny 
• Extremely fast 
Need huge, extremely 
precise detectors to even 
be able to measure them 

44 meters

25 m
eters

ATLAS Detector



Identifying Particles is Hard
Collision products are (continued) 
• Not produced in isolation 
• Highly energetic and/or unstable 
• Prone to split/decay into further 

particles 
Reconstructing the ‘underlying 
event’ from detector data is 
requires sophisticated algorithms

Particle Collision

Particle Collision at home



Storing Data is Hard
The LHC produces 40 TB of data 
every second 
• Thats an Amazon hard drive 

Truck every 41 minutes  
• Or 35 of them per day 
Need to discard most of the data, 
and only save the interesting bits 
Needs extremely fast decision 
making



Making Predictions is Hard
We cannot see particles, only their 
signature in the detector 
• Need to simulate collision and 

interaction with detector 
• Thousands of particles per 

collision 
Simulation software exists, but has 
to balance trade off between 
speed and accuracy



Analyzing Data is Hard (a.k.a. it’s Literally Random)
Particle collisions are quantum-
mechanical processes 
• This means you cannot exactly 

predict what will happen 
• You can only predict probabilities 
Evaluating measurements only 
possible in aggregate 
We need a lot of data, both 
measurement and simulation
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• Make prediction of outcome 
• Compare to experiment 

• Easy, right? Well… 
• Ok, fine, not that easy. 
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• HEP example 

• Make prediction of outcome 
• Compare to experiment 

• Easy, right? Well… 
• Ok, fine, not that easy. 
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successful model in all of science



High Energy Physics 
The Standard Model of Particle Physics is arguably the most 
successful model in all of science. 
But it has a few missing pieces

What is dark matter Why do neutrinos 
have mass



High Energy Physics 
Where does this leave us? 
• Particle Physics has a very well founded model 
• Currently missing some important puzzle pieces 
• So far, no new discoveries, so we can 
1. Get mode data 

• Expensive, slow, timescale of decades  
2. Get better at using the data we have 

• Possible right now, using ….



Machine Learning 
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(I refuse to call it AI)



Machine Learning 
ML has seen incredible 
rise to popularity 
• Especially large 

language models and 
other generative models  

• Some applications are 
great tools, others less 
so 

• Here to stay



Machine Learning 
Modern ML models highly complex 

Based on fundamental 
mathematical principles 
• Linear algebra 
• Gradient descent



Machine Learning 
Linear algebra 
• Basic example: dense layer 
• Simple building block of neural 

network/ML model 
• Input vector multiplied by weight 

matrix  
• Large enough model can 

approximate any function 
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Machine Learning 
Gradient Descent 
• Define goal for network 
• Express goal as (loss) function 
• Calculate loss on training data 
• Adjust network weights to 

minimize loss function 
• Repeat 



Machine Learning 
Gradient Descent 
• Define goal for network 
• Express goal as (loss) function 
• Calculate loss on training data 
• Adjust network weights to 

minimize loss function 
• Repeat 

SGD without momentum SGD with momentum



Learning Machine Learning 
Now is great time to look into ML 
• May seem intimidating 
• Huge amount of great tutorials  
• Training your first model can be 

simple python code 



Machine Learning in High 
Energy Physics
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Identifying Particles is Hard
Earliest ML application: Classification 
• MNIST hand written data set 
• Cifar-10 image data set 
• Neural network learns to correctly 

classify images 
• Around 2015: better reported 

performance than humans
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We have thing to classify! 
• Take collision event
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Identifying Particles is Hard
We have thing to classify! 
• Take collision event 
• Treat it like an image 
• Use convolutional NN 
• Example: Top-Quark tagging 
• ML starts outperforming 

classical methods

https://arxiv.org/abs/1902.09914



Identifying Particles is Hard
Fast advancing field 

For jets: 
• Point clouds or graphs  
• Better suited than images 

For images: 
• Vision transformers 

replacing CNNs

https://arxiv.org/abs/2003.01251

https://arxiv.org/abs/2010.11929v2



Storing Data is Hard
Can’t store all the collected data 
• Use ‘triggers’ to select 

interesting events 
• 25 nanoseconds to decide 
• Only simple operations 

possible 
• Need fast ML

http://dx.doi.org/10.1088/1748-0221/9/02/C02019



Storing Data is Hard
Machine Learning operations are matrix multiplication 
• Parallel computing architecture better at matrix multiplication 
• The more specialized, the faster 

CPU GPU TPU

Speed

Flexibility



Storing Data is Hard

CPU GPU TPU FPGA

Speed

Flexibility

Machine Learning operations are matrix multiplication 
• Parallel computing architecture better at matrix multiplication 
• The more specialized, the faster 



FPGA: Field programmable gate array 
• Programmable with specific neural network instructions 
• Executes neural network evaluation way faster 

Storing Data is Hard

CPU GPU TPU FPGA

Speed

Flexibility



Can’t store all the 
collected data 
• FPGAs for fast ML 

evaluation for trigger

Storing Data is Hard



Can’t store all the 
collected data 
• FPGAs for fast ML 

evaluation for trigger 

• Train model at trigger 
level

Storing Data is Hard

OR
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Making Predictions is Hard
Monte Carlo Simulation is slow 
• Takes up major part of ATLAS 

compute budget 
• Need lost of MC data  
• Bottleneck for future data 

analysis in HEP

https://cds.cern.ch/record/2729668



Making Predictions is Hard
Example: Calorimeter Simulation 
• Particle deposits energy 
• Calorimeter measures energy 
• Problem: 

• Particle don’t just disappear



Making Predictions is Hard
Example: Calorimeter Simulation 
• Particle deposits energy 
• Calorimeter measures energy 
• Problem: 

• Particle don’t just disappear 
• They create a cascade\ 

shower of particles 
• Need to model ever particle

P. L. Rocca et. al.: The Use of Avalanche Photodiodes in High Energy Electromagnetic Calorimetry (2011)



Making Predictions is Hard
Can we speed this up?

Sim 1st 
particle

Classical:

Sim 2nd 
particle

Sim 3rd 
particle

Sim last 
particle

Simulated 
cascade



Making Predictions is Hard
Generative Neural Networks 
• Map random noise to 

structured outputs 
• Slow to train, fast to evaluate 

•
DALL-E 3



Making Predictions is Hard
Can we speed this up?
Classical:

Sim 1st 
particle

Sim 2nd 
particle

Sim 3rd 
particle

Sim last 
particle

Simulated 
cascade

Machine learning:
Simulated 
cascade



Making Predictions is Hard
ML Calorimeter Simulation 
• Use generative model 



Making Predictions is Hard

Photon shower Charged pion shower

ML Calorimeter Simulation 
• Use generative model 
• Replace 2D image output 

with calorimeter shower  
• Train model in classical 

simulation 
• Generate new data fast



Making Predictions is Hard



Making Predictions is Hard
Does it work? 
• Can’t directly compare 

generated showers 
• Individual examples 

meaningless anyway 
• Need to look at 

distributions

Classical Generated



Making Predictions is Hard



Making Predictions is Hard

Simulator Hardware 40 GeV Pions Speedup 160 GeV Pions Speedup

GEANT4 CPU 4475±178 ms - 14544±479 ms -

BIB-AE CPU 254.41±0.08 ms x18 253.82±0.02 ms x57

BIB-AE GPU 2.842±0.003 ms x1575 2.732±0.004 ×5324



Making Predictions is Hard
Going Beyond: Training 
on Data 
• Getting labeled real 

data is rare 
• Testbeam data 
• Outperform classical 

simulation?

D. Heuchel: Particle Flow Studies with 
Highly Granular Calorimeter Data (2022) 



Making Predictions is Hard



Making Predictions is Hard
Cutting Edge: 
• Diffusion models 
• Move to point 

clouds  
• Little CS 

precedent 
• Largely HEP ML 

driven



Analyzing Data is Hard
So far: no new discoveries of 
particles beyond the Standard Model 
• Maybe not enough data 

→ Previous ML methods 
• Not looking for the right theory 

→ Anomaly detection

https://www.tatvic.com/blog/detecting-real-time-anomalies-using-r-google-analytics-360-data/



Analyzing Data is Hard
Anomaly detection 
• Have ML model look through 

LHC data for   
• Rare events  
→ Unsupervised AD 

• Unexpected events  
→ Semi-supervised AD

https://www.tatvic.com/blog/detecting-real-time-anomalies-using-r-google-analytics-360-data/



Analyzing Data is Hard

Generatorx x'z

OutputReal Data

Encoder

Latent

MSE

Unsupervised AD 
• Find rare samples 
• Autoencoder Neural Network 

• Learns to encode events 
into smaller representation 

• Reconstructs events from 
representation



Analyzing Data is Hard
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Analyzing Data is Hard

Generatorx x'z

OutputReal Data

Encoder

Latent

MSE

Small Difference

Big Difference

• Used for outlier 
detection in industry 
• Production Quality 

Assessment 
• Predicting hard 

drive failures 
• Less suited for HEP 

• Interesting events 
similar to boring



Analyzing Data is Hard
Semi-Supervised AD 
• Find unexpected samples 

• Cut out part of data 
• Use generative model to 

learn data
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Analyzing Data is Hard
Semi-Supervised AD 
• Find unexpected samples 

• Cut out part of data 
• Use generative model to 

learn data 
• Predict cut out part 
• Compare prediction and 

cut out

Classifier 
Model



Analyzing Data is Hard
In High Energy Physics 
• Define and cut out Signal 

Region (SR) 
• Train on remaining region 

(Side Band, SB) 
• Compare Prediction and SR

mjj

#

SRSB SB



Analyzing Data is Hard
In High Energy Physics 
• Define and cut out Signal 

Region (SR) 
• Train on remaining region 

(Side Band, SB) 
• Compare Prediction and SR 
• State of the Art AD method 
• Starting to see application! mjj

#

SRSB SB
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Conclusion

• Machine Learning is finding applications all over High 
Energy Physics 
• Classification/Fast Simulation/Anomaly Detection/etc. 
• Very exciting and fast moving field 
• Close connection to cutting edge computer science 
• Unique challenges requiring unique solutions



Backup

91



Generative Backup: GANplify
Common point of criticism: information in new samples  
• Assume generative model trained on N events 
• Used to generate M >> N events

Info (N real points) Info (M gen. points) =
Little advantage to be gained from generative model

Info (N real points) Info (M gen. points) <
Generative model can speed up simulations



Generative Backup: GANplify

• Draw 100 points from true 
camel back distribution 

• This is designated as the 
(training) sample 

• Calculate fraction of points in 
each quantile 

• Baseline comparison



Generative Backup: GANplify

• For 100 training samples,  
100 fits and 100 GANs 
compare MSE 

• GAN describes distribution 
better than training data 

• Needs 10,000 GANed points 
to match 150 true points



Generative Backup: GANplify

• How is this possible?  
• In terms of information: 

• sample: only data points 
• GAN: data + smooth, 

continuous function 
• Inductive bias allows the GAN 

to interpolate



Generative Backup: GANplify
Common point of criticism: information in new samples  
• Assume generative model trained on N events 
• Used to generate M >> N events

Info (N real points) Info (M gen. points) =
Little advantage to be gained from generative model

Info (N real points) Info (M gen. points) <
Generative model can speed up simulations



Generative Backup: Variational Autoencoder

Decoderx x'z

OutputReal Data

Encoder

Latent

KLD

MSE

• Encoder: data → latent; Decoder: latent → reconstructed data 
• Minimize difference between input and reconstructed data 
• Regularize latent → unit Gaussian 

•



Generative Backup: Generative Adversarial Network

• Generator: noise → generated data 
• Discriminator: distinguish real and generated data 
• Used discriminator as loss to train generator

Generator

Discr.

Noise
x x'z

Output

Real

Fake

Real Data



Generative Backup: Normalizing Flow

• Invertible neural network, both: (data → latent) and (latent → data) 
• Directly minimize negative log-likelihood in (data → latent) direction 
• Generate data with (latent → data) direction

x z

LatentReal Data



Machine Learning 
Supervised Learning 
• Learns to make specific 

predictions for data 
• Labeled data 
• Classification 
• Regression 
• Etc.  

Unsupervised Learning 
• Learns structure of 

data 
• Unlabeled data  
• Generation 
• Anomaly Detections 
• Etc.


