Machine Learning and High-Energy Physics

Sascha Diefenbacher, QuarkNet, July 10th 2024

A
m‘

ATLAS [

EXPERIMENT BERKELEY LAB




Overview

- My Career Path
- HiIgh-Energy PhysICS
- Machine Learning

- Combination Machine Learning and High-Energy Physics



My Career Path



I’m from Germany



I’m from Germany
(Yes, thats where the
accent’s from)




Tubingen

RrReutingen

Nendingen

Vilingen-Schwenningen

TusSingen

Born in Nendingen (Tiny
town in southern Germany
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Carly Live

- Always Interested in science

- Did all the extra-curricular stuff during high
SCNhOOl

- “Engineering School”

+ "Robotics club”

- “Convincing your physics teacher to spend
a full lesson bullding a magnetic accelerator”



Carly Live

- Coding
+ After school coding classes
- Coding camps

- Community college courses



Carly Live

- Coding

A A A

- Codihgeamps

- Modding video games
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Undergrad: Northward to
Heldelberg (less tiny town In
southern Germany




Undergrao

Bachelors Thesis with Tilman
Plehn in 2017

+ Phenomenologist at Institute
for Theoretical Physics In
Heldelberg

- Dark Matter and LHC
ohenomenology and theory




Undergrao

- Bachelors Thesis with Tilman
Plehn in 2017

- “There’s this new thing called
Machine Learning, Is that
something you'd be
interested In?”
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- Bachelors Thesis with Tilman
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Undergrao

- Bachelors Thesis with Tilman
Plehn in 2017

- “There’s this new thing called
Machine Learning, Is that
something you'd be
interested In?”

. “Nah”

+ |hesis on dark matter theory
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Undergrao

- Masters Thesis with Tilman Plehn
(@gain) in 2019

+ \Whole group was doing
machine learn by then



Undergrao

Masters Thesis with Tilman Plehn
(@gain) in 2019

+ \Whole group was doing
machine learn by then

- Thesis on ML for classification In
Nigh energy physics

- Wild West era of ML In HEP
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Grad School

+ PhD thesis with Gregor Kasiezcka

- CMS experimentalist at University of
Hamburg



Grad School

+ PhD thesis with Gregor Kasiezcka

- CMS experimentalist at University of
I—l am b u rg Input Intermediate@\_ Output

ifference
ritic iti
@" Post
—| Decoder ||X — Processor| |X
B 1 Network
\ED LCritic

\ Latent T MSE
Critic Critic L
N(0, D)=

Extremely fast developing fielo

Leip—ar = KLD + LcyiticL, + Lcritic + LcriticD Lpost = MMD + MSE

- Cutting edge research is exhilarating

X

Dove deep into ML in HEP é




Postdoc: Further north
Berkeley
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FPOoStdoC

- With Ben Nachman at LBL in 2023 (ATLAS experimentalist at LBL

- Jump further into experiment




Break for Questions







HIgh Energy Physics

- Studying the fundamental forces between the smallest existing
particles

+ Describe them in mathematical terms
- Define RHypothesis
+ Make prediction

- Jest prediction



HIgh Energy PhysIcS

+ Basic example

- Hypothesis: If this apple drops,
it will follow a path described by

x(1) = xp — Egtz




HIgh Energy PhysIcS

+ Basic example
- Hypothesis: If this apple drops,
it will follow a path described by
x(1) = xp — %gtz
+ Predict point on path



HIgh Energy PhysIcS

+ Measure real path and compare
to prediction

+ Basic example
- Hypothesis: If this apple drops,
it will follow a path described by
x(1) = xp — %gtz
+ Predict point on path




HIgh Energy PNysICS

 HEP example

- Hypothesis: If | collide two

particles at nearly the speed of
ight, they will interact based on . > .

this model

1
&L = ——F, F*
4

+iyDy+ h.c.

+|D,p 1> — V(¢)



HIgh Energy PhysIcS

- HEP example ‘

Q—H/—Q
/

- Make prediction of outcome




HIgh Energy PhysIcS

- HEP example
- Make prediction of outcome

- Compare to experiment




HIgh Energy PhysIcS

- HEP example
+ Make prediction of outcome
- Compare to experiment

- Easy, right”? Well...




Colliding Particles is Hard

1o reach the current energy
frontier we had to:

+ Bulld a 27 km long
1 e synchrotron accelerator

ZSUISSE___ -~

e

+ Accelerate protons to

99.9999991% the spee
of light

 FIne tune It to collige
bunches with 2.5
Mmicrometer diameters




Detecting Particles is Haro

Collision products are

ATLAS Detector
- TNy

+ Extremely tast A
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Need huge, extremely o B

precise detectors to even 5
pbe able to measure them
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|[dentitying Particles is Haro

Particle Collision

Collision products are (continued)
Not produced In isolation
Highly energetic and/or unstable

Prone to split/decay into further
particles

Reconstructing the ‘underlying
event’ from detector data Is
requires sophisticated algorithms




Storing Data is Haro

The LHC produces 40 1B of data
every second

- [hats an Amazon hard arive
Truck every 41 minutes

- Or 35 of them per day

Need to discard most of the data,
and only save the interesting DItS

Needs extremely fast decision
making



Making Predictions Is Hard

We cannot see particles, only thelr
signature in the detector

- Need to simulate collision and
iINnteraction with detector

+ [housands of particles per
collision

Simulation software exists, but has
to balance trade off between
speed and accuracy




Analyzing Data is Hard (a.k.a. it’s Literally Random)

Particle collisions are guantum-

mechanical processes

+ [his means you cannot exactly
oredict what will happen

* You can only predict probabillities

Evaluating measurements only
possIble In aggregate

We need a lot of data, both
measurement and simulation




HIgh Energy Physics

- HEP example
+ Make prediction of outcome
- Compare to experiment

- Easy, right”? Well...

- Ok, fine, not that easy.



HIgh Energy PhysIcS

+ HEP example
- Make prediction of outcome %,
- Compare to experiment s \
*HIGH ENERGY  "ayr AT LEAST THE DATA

+ Easy, right? Well... * PHYSICS IS HARD FIS THE MODEL RIGHT?
. Ok, fine, not that easy. ~ ;3 '

", y.
y
?
!

. 45THE DATA FITS
THE MODEL RIGHT?




HIgh Energy PhysIcS

The Standard Model of Particle Physics is arguably the most
successful model in all of science



HIgh Energy PNysICS
The Standard Model of Particle Physics is arguably the most

successful model in all of science.

But It has a few missing pieces
What S dark matter

Why do neutrinos
have mass
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HIgh Energy Physics

Where does this leave us?
- Particle Physics has a very well founded model
- Currently missing some important puzzle pieces
+ S0 far, no new discoveries, so we can
1. Get mode data
+ Expensive, slow, timescale of decades
2. Get better at using the data we have

- Possible right now, using ....



Machine Learning



Machine Learning

ML has seen incredible
rise 1o popularity

Especially large
language models and
other generative models

+ Some applications are
great tools, others less
SO

* Here 1o stay

l Al Overview Learn more :

According to UC Berkeley geologists, eating at least one small rock per day
Is recommended. Rocks can range in size from a handful of dust to a 5-pound
cobblestone. Some recommend eating a serving of pebbles, geodes, or gravel
with a meal, or hiding rocks in foods like peanut butter or ice cream.  a

GitHub
) Copllot

Bing Al



Machine Learning

Modern ML models highly complex THIS 15 YOUR MACHINE LEPRNING SYSTETT?

| YUPI YOU POUR THE. DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT

Based on fundamental | BEAGLERS (N FE OFER S0E.
. o WHAT IF THE ANSLEERS ARE LURONG? )
mathematical principles TSR TE PILE VL
| THEY START (OOKING RIGHT.
+ Linear algebra

- (Gradient descent /




Machine Learning

Linear algebra
+ Basic example: dense layer

- Simple building block of neural
network/ML model

- Input vector multiplied by weight
matrix

- Large enough model can
approximate any function




Machine Learning

Gradient Descent

+ Define goal for network

- Express goal as (loss) function
- Calculate loss on training data

+ AdJjust network weights to
Minimize loss function

- Repeat



Machine Learning

Gradient Descent
+ Define goal for network
- Express goal as (loss) function

- Calculate loss on training data

+ AdJjust network weights to
Minimize [oss function

- Repeat



_earning Machine Learning

Now Is great time to ook iInto ML

class NeuralNetwork(nn.Module):

+ May seem intimidating 8 i
self.flatten = nn.Flatten()
o Huge amOunt Of grea-t tUtOrla‘S self.line.zar_relu_stack = nn.Sequential(
nn.Linear(28%23, 512),
L , nn.ReLU(),
+[raining your first model can be nn.Linear(512, 512),
: nn.ReLU(),
Slmp‘e pyJ[hOﬂ COde nn.Linear (512, 10),
)

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits



Machine Learning in High
Energy Physics




|[dentitying Particles Is Hard

oIR8 IR T 4 6
Earliest ML application: Classification 0l/1212 3|4
. ¥\ L|O 510
MNIST hand written data set ol21718 3¢
S151914): 8 7
. : _ ' 2 9 | G b 4
Cifar-10 image data set 2l =K
2 ¢/ 3 615

Neural network learns to correctly sirplane -

P automobile E.
classify iImages id 5 R ﬂﬁ \ rll=
- Around 2015: better reported e ﬁﬁg%éﬁg
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|[dentitying Particles Is Hard

We have thing to classity!

- [ake collision event
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We have thing to classity!
- [ake collision event

- [reat It like an Image




|[dentitying Particles Is Hard

We have thing to classity!
- [ake collision event

- [reat It like an Image




|[dentitying Particles Is Hard

We have thing to classity!

- [ake collision event

- [reat It like an Image

Full Event
Information

- Use convolutional NN

Region of
interest



|[dentitying Particles is Haro

We have thing to classify! o l

. Take collision event o [T

- Treat it like an image - '

- Use convolutional NN S

- Example: Top-Quark tagging r I |

+ ML starts outperforming ‘r S
classical methods _ I

https://arxiv.org/abs/1902.09914



|[dentitying Particles is Haro

Fast advancing fielo

-or jets:
~oint clouds or grapns https: //arxw org/abs/ZOOS 01251
Better suited than images @ o
éar/ Head : M:P
~Or Images: e | E
Co s déé#ﬁé@“ : é%f
- Vision transformers T | e

replacing CNNs iS -SEmEEmdEe (e
https://arxiv.org/albs/2010.11929v2



Storing Data is Hard

| TileCal Detector

Can’t store all the collected data | |

BUNCH CR IN

40 MHz 4 . 4 | | Digital

Use ‘triggers’ to select St Flpelnes
nteresting events ~ meeee—1)e '
Derandomizers
- 25 nanoseconds to decide I C{Mls
' . | Back-end
‘ On\y lSImp\e Opera’[IOnS REGION OF " rol f: RODS System
possiole e o
LEVEL 2 TRIGGER ROB Rgﬁf(:é(r)SUt
° Need faSt I\/”_ 2 KHz Event Builder
........ EVENT FILTER | Full Event
200 Hy Recordmg Buffers

http://dx.doi.org/10.1088/1748-0221/9/02/C02019



Storing Data is Haro

Machine Learning operations are matrix multiplication
- Parallel computing architecture better at matrix multiplication

- [he more specialized, the faster

CPU GPU

Speed '

TPU

‘ Flexibility



Storing Data is Haro

Machine Learning operations are matrix multiplication
- Parallel computing architecture better at matrix multiplication

- [he more specialized, the faster

CPU GPU

TPU FPGA
Speed '

' Flexibility



Storing Data is Hard

FPGA: Field programmable gate array
* Programmable with specific neural network instructions

+ EXecutes neural network evaluation way faster

CPU GPU TPU

FPGA
Speed '

' Flexibility



Storing Data is Hard

Can'’t store all the
collected gata

+ FPGAs for fast ML
evaluation for trigger



Storing Data is Haro

Can'’t store all the
collected gata

- FPGAs for fast ML
evaluation for trigger

OR

+[rain model at trigger
level ’

Measurement

Online

ONLINEFLOW

. generate |
. synthetic

events

save
few
events

A

Offline

Analysis

Analysis




Making Predictions Is Hard

Monte Carlo Simulation is slow

+ Takes up major part of ATLAS
compute budget

- Need lost of MC data

- Bottleneck for future data
analysis in HeP

@® MC simulation @ MC reconstruction
® Analysis @ Group production

Oth
® ! https://cds.cern.ch/record/2729668

@ MC event generation
@ Data processing




Making Predictions Is Hard

Example: Calorimeter Simulation
+ Particle deposits energy

- Calorimeter measures energy
* Problem:

- Particle don't just disappear



Making Predictions Is Hard

Example: Calorimeter Simulatior
+ Particle deposits energy
- Calorimeter measures energy
* Problem:

- Particle don't just disappear

- They create a cascade\
shower of particles

+ Need to model ever particle

P. L. Rocca et. al.: The Use of Avalanche Photodiodes in High Energy Electromagnetic Calorimetry (2011)



Making Predictions Is Hard

Can we speed this up”

Classical: ‘\Q

Sim 1st Sim 2nd Sim 3rd
particle particle particle

T T T

¥ © ©

Sim last Simulated
particle cascade

T

W

900 —




IS Hard
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Making Predictions Is Hard

Can we speed this up”?

Classical: ‘\\x

Sim last | Simulated
particle cascade

Sim 1st Sim 2Nad Sim 3rd
particle particle particle

i L 4
W
Machine learning:
> Simulated
W —

000 —

?

W W

cascade



IS Hard

I0NS IS

Making Predict
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- Use generative model



Making Predictions Is Hard

ML Calorimeter Simulation
- Use generative model

+ Replace 2D image output
with calorimeter shower

- Train model In classical
simulation

- (3enerate new data fast

y [cells]




Making Predictions Is Hard

1111:1111‘1114111,!111111111||1
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y [cells]



Making Predictions Is Hard

Does It work"?

Classical Generated
t .+ Can’t directly compare
“ | generated showers

+ Individual examples
meaningless anyway

y [cells]

- Need to look at
distributions




Making Predictions is Haro
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Making Predictions is Haro

Simulator Hardware 40 GeV Pions  Speedup 160 GeV Pions  Speedup

GEANTA4 CPU 4475+1/8 ms - 14544+4/79 ms -

BIB-AE CPU 254.41+£0.08 ms X183 253.82+0.02 ms X7

BIB-AE GPU 2.842+0.003 ms X1575 2.7/32+0.004 x5324




Making Predictions Is Hard

Going Beyond: Training
on Data

Getting labeled real
data Is rare

- Jestbeam data

Qutperform classical
simulation”?

D. Heuchel: Particle Flow Studies with
Highly Granular Calorimeter Data (2022)



Making Predictions is Haro

0.14r 40 GeV : 0.14} 160 GeV
— Testbeam
0.12}- - BIB-AFE - 0.12¢+
- Geantd
- 0.10¢ : - 0.10f
D )
= N
= 0.08 = 0.08
z :
5 0.06 5 0.06
= -
0.04 0.04
0.02¢} 0.02¢}

energy sum [GeV] energy sum [GeV]



Making Predictions Is Hard

Cutting Edge:

Initial noise tsg tha
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Analyzing Data Is Hard

So far: no new discoveries of
particles beyond the Standard Model

+ Maybe not enough data
— Previous ML methods
+ Not looking for the right theory

— Anomaly detection

https://www.tatvic.com/blog/detecting-real-time-anomalies-using-r-google-analytics-360-data/



Analyzing Data Is Hard

Anomaly detection

+ Have ML model look through
| HC data for

-+ Rare events
— Unsupervised AD
- Unexpected events

— Semi-supervised AD




Analyzing Data Is Hard

Unsupervised AD
* FINd rare samples
+ Autoencoder Neural Network

+ Learns to encode events
INto smaller representation

- Reconstructs events from
representation

Real Data

Latent

Output

/

<

Generator | |

T

MSE




Analyzing Data Is Hard

Small Difference

Real Data Output

/ €T Encoder z (Generator

> <

Big Difference

S

e




Analyzing Data Is Hard

- Used tor outlier
S detection in iIndustry

Real Data Output

« - Production Quality
Latent/ / ASSGSSFHGHJ[

Z Generator | |2

\ \ * Predicting haro

drive fallures
MSE «

N
2

P

+ Less suited for HEP

Big Difference + Interesting events
similar to boring




Analyzing Data Is Hard

Semi-Supervised AD

* FINd unexpected samples

- Cut out part of data

- Use generative model to
learn data




Analyzing Data Is Hard

Semi-Supervised AD

* FINd unexpected samples

- Cut out part of data

- Use generative model to Generative
learn data Mode

+ Predict cut out part




Analyzing Data Is Hard

Semi-Supervised AD

* FINd unexpected samples
- Cut out part of data

- Use generative model to Classifier
learn data Model

+ Predict cut out part

+ Compare prediction and
CuUt out




Analyzing Data Is Hard

In High Energy Physics

- Define and cut out Signal
Region (SR)

+[rain on remaining region
(Side Band, SB)

- Compare Prediction and SR




Analyzing Data Is Hard

In High Energy Physics

- Define and cut out Signal
Region (SR)

+[rain on remaining region
(Side Band, SB)

-+ Compare Prediction and SR
- State of the Art AD method

- Starting to see application!

.|L|L
T




Conclusion



Conclusion

 Machine Learning is finding applications all over High
Energy Pnysics

- Classification/Fast Simulation/Anomaly Detection/etc.
+ Very exciting and fast moving fielo

- Close connection to cutting edge computer science

- Unigque challenges requiring unigque solutions






Generative Backup: GANplify

Common point of criticism: information in new samples
+ Assume generative model trained on N events

- Used to generate M >> N events

Info (N real points) = Info (M gen. points)
Little advantage to be gained from generative model

Info (N real points) < Info (M gen. points)
Generative model can speed up simulations




Generative Backup: GANplify

* Draw 100 points from true
camel back distribution

- This Is designated as the
(training) sample

- Calculate fraction of points in
each quantile

Baseline comparison

0.12

0.10-
0.08-
X 0.06-
0.04-
0.02-

0.00-

10 quantiles --=- truth

GAN trained on 100 data points

Sample

h




Generative Backup: GANplify

- For 100 training samples,
100 fits and 100 GANSs
compare MSE

+ GAN describes distribution
better than training data

+ Needs 10,000 GANed points
to match 150 true points

LL]

quantile v MS

10 quantiles

0.100: 100 data points

0.080°

0.060:

0.040

0.020 300 -------------------------------------------------------------

0.010{ 1000

101 102 103 104 105> 10
number GANed




Generative Backup: GANplify

- How is this possible? 0100, 10 quantiles
0080 100 data points
N terms of information: T
1,0.060
. - 0
sample: only data points =0 040 GAN
QD :
- GAN: data + smooth, = | N S
continuous function S {200 | | B
INnductive bias allows the GAN 'soo
to interpolate 0.010-;___1__9_9_9 _________________________________________________________________

101 102 103 104 105> 10
number GANed



Generative Backup: GANplify

Common point of criticism: information in new samples
+ Assume generative model trained on N events

- Used to generate M >> N events

Info (N real points) = Info (M gen. points)
Little advantage to be gained from generative model

, Info (N real points) < Info (M gen. points) | |
| Generative model can speed up simulations




Generative Backup: Variational Autoencoder

Real Data Output
Latent
L |
€T Encoder | Z H Decoder €T
— O
/ KLD \
MSE

+ Encoder: data — latent: Decoder: latent — reconstructed data
+ Minimize difference between Input and reconstructed data

- Regularize latent = unit Gaussian



Generative Backup: Generative Adversarial Network

Real Data Output

Noise /

€T Z |—| Generator || H

: \ Real
\ \ DiSCT. |

/ Fake

- (Generator: noise = generated data
+ Discriminator: distinguish real and generated data

- Used discriminator as loss to train generator



Generative Backup: Normalizing Flow

Real Data Latent

XL H Tl* —TQ* eoeoco0oo0 T]:_l— T];k HZ

- Invertible neural network, both: (data — latent) and (latent — data)
- Directly minimize negative log-likelihood in (data — latent) direction

- (Generate data with (latent = data) direction



Machine Learning

Supervised Learning Unsupervised Learning

- Learns to make specific + Learns structure of
oredictions for data data

- Labeled data - Unlabeled data

- Classification - (Generation

+ Regression - Anomaly Detections

- Ete. - EtC.



