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An Introduction to Derivatives 
 
A Change in Notation: 
You will remember that the slope of a position versus 
time graph (like the one shown to the right) will give you 
the velocity of an object.  The slope of a graph is defined 
as the rise over run, or the change in the vertical 
variable divided by the change in the horizontal 
variable.  In this particular graph, the vertical variable is 
the position and the horizontal variable is the time.  Thus 
the slope of this graph can be defined as: 

 

 
Thus the formula for the motion of this object could be described as: x = 2t  [leaving out units (m/s) for clarity] 
 
A derivative uses a slightly different notation, but with similar results.  Instead of using the capital Greek letter delta 
(D), the derivative uses the lowercase Greek letter delta (d) which is often written more simply as the letter d.   
 
Thus the slope of this graph would be written as: 

 

 
But this new form of the slope equation does not express the slope between two points; it actually expresses the 
slope at a single point.  It does this by letting the change in time (Dt) approach zero – thus the change in notation to 
the lowercase delta.  You could also find the slope of the curve at a single point manually by drawing a tangent to the 
curve, but as you see, derivatives offer a more elegant solution to this problem 
 
Mathematically, the derivative of the graph above can be expressed as follows: 

 

 
Which can expressed as the change in the function 2t with respect to the change in time is 2.  (Again leaving out the 
unit, m/s, for clarity) 
 
For the graph shown above, this change is not too 
interesting because the slope is the same (2 m/s) at 
every point, but it is especially useful in cases where 
the slope is not constant as in this next case: 
 
Here the motion of the object is more complex, stopping 
and reversing direction for a portion of its journey.  You 
can see that it stops briefly near 3 seconds and 8 
seconds, but it would be nice to find the velocity at each 
point without resorting to drawing tangent lines at each 
point on the graph to find the velocity at that instant. 
 
Derivatives offer a solution to this problem as long as 
the function that describes the curve is known.  
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The function that describes the position of this object is: 
 

x = t3 – 16t2 + 68t - 80 
 
To find the velocity (slope) of the graph at each point, we 
need to take the derivative of this function.  The notation for 
this appears as follows: 

 

 
This notation means that we are looking for the change in 
the function t3 – 16t2 + 68t - 80 with respect to the change 
in time dt.  The result of taking this derivative is: 

 

 
This means that the slope (or velocity) of this graph can be found by plugging the time into the differentiated function 
3t2 - 32t + 68.  For example, we can find the slope at t  = 8 seconds by substituting it into our new function: 
 
Slope = 3(8)2 – 32(8) + 68    
  = 192 – 256 + 68  

= 4 
 

So at the instant that t = 8 seconds, the slope of the graph is 4 m/s.  You could also use the same function to find 
times when the object was stopped (the slope = 0), or determine when the object has a positive or negative velocity.  
The question remains however, how do you find a derivative? 
 
Calculating a derivative: 
There is a simple rule to calculate the derivative of most functions.  It simply requires multiplying the exponent of 
each term by the original coefficient and then reducing the exponent of each term by one.  For example: 
 
Taking the derivative of t3 with respect to the variable t becomes: 

  

 
Or taking the derivative of -16t2 with respect to the variable t becomes: 

  

 
Or taking the derivative of 68t with respect to the variable t becomes: 

  

 
Finally, the derivative of a constant is always defined as zero.  This may seem strange at first, but remember that 
the derivative tells us the slope of a function; but when a function is constant (-80), there is no slope.  So taking the 
derivative of -80 with respect to the variable t becomes: 

  

 
 
 

dx
dt

=
d(t3  −  16t2  +  68t  −  80)

dt

d(t3  −  16t2  +  68t  −  80)
dt

= 3t2 −32t + 68

d(t3)
dt

= (1⋅3)t3−1 = 3t2

d(16t2 )
dt

= (−16 ⋅2)t2−1 = −32t1 = −32t

d(68t)
dt

= (68 ⋅1)t1−1 = 68t0 = 68

d(−80)
dt

= 0
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So in our example, we found the derivative of our complex function (t3 – 16t2 + 68t - 80), by taking the derivative of 
each of its components: 

 

 
This process will work with most functions.  Try it with the following equations: 
 

       

 

       

 

       

 
 
A note about the notation dt: The last problem you did included the variable x, but we are looking for changes in 
the function as t changes.   Unless we know of another mathematical equation that describes how x changes as t 
changes, we assume that x is a constant in the equation just as p was a constant in the fourth equation listed, and 
treat it as simply part of the coefficient. 
 
 
Multiple Order Derivatives: 
Sometimes it is useful to take a derivative of a derivative.  We know from the opening example on this worksheet 
that taking the derivative of x with respect to t (dx/dt) gives us the slope of the position versus time graph, which in 
Physics is defined as the velocity.  You might remember that the slope of the velocity versus time graph is the 
acceleration; so if we take the derivative of v with respect to t (dv/dt), we can determine an object’s acceleration at 
any time.  Using our opening example: 

 
 

 

 

 

 
The last derivative can also be written as the second derivative of x with respect to t.  This notation appears as 
follows: 

 

 
This notation means that you wish to take the derivative twice with respect to t.  Notice that the result is the same as 
before.  For the function x = 2t4 + 4t3 + 12t – 50, determine the following: 
v =        a = 
 
What is the object’s position, velocity and acceleration at t = 3 seconds?    x =   v =  a =  
Is the object’s acceleration increasing or decreasing at t = 3 seconds? 

d(t3  −  16t2  +  68t  −  80)
dt

=
d(t3)
dt

+
d(−16t2 )

dt
+
d(68t)
dt

+
d(−80)
dt

= 3t2 −32t + 68− 0

d(2t2 )
dt

=
d(2π t2 )
dt

=

d(2t3)
dt

=
d(4t−1)
dt

=

d(3t5 +3t2 )
dt

=
d(2xt2 )
dt

=

80 -68t   16t - t 23 +=x

v =
dx
dt

=
d(t3  −  16t2  +  68t  −  80)

dt
= 3t2 −32t + 68− 0

a = dv
dt
=
d(3t2 −32t + 68)

dt
= 6t −32+ 0

a =
d 2x
dt2

=
d 2 (t3  −  16t2  +  68t  −  80)

dt2
= 6t −32+ 0
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Special Derivatives  
There are four common derivatives used in Physics that do not fit the rule given above.  They are the derivatives of 
sine, cosine and the natural logarithms.  You will need to memorize these until your Calculus class explains in depth 
how their derivatives are taken.  Their derivatives appear below: 
 

       

 
 
The Product Rule: 
If a function consists of two functions that are multiplied by each other, there is a simple rule to follow to find the 
resultant derivative: 

 

 
For example, consider the following complex function 5sin(t) that is the product of 5 and sin(t).  It can be solved using 
the product rule as shown: 

 

 

        

 

     

 
 
The Quotient Rule: 
Although it is not used commonly in Physics, there is a similar rule to use when you have a quotient of two functions: 

 

 
For example, consider the derivative of the function (t2 - 1) / (t2 + 1).  It can be solved using the quotient rule as 
follows: 

 

 

       

 

     

 
 

d[sin(t)]
dt

= cos(t) d[cos(t)]
dt

= −sin(t) d[ln(t)]
dt

=
1
t

d[et ]
dt

= et

d( function1⋅ function2)
dt

= function1⋅ d( function2)
dt

+ function2 ⋅ d( function1)
dt

d[5sin(t)]
dt

=
d[5 ⋅sin(t)]

dt
= 5 ⋅ d[sin(t)]

dt
+ cos(t) ⋅ d[5]

dt
= 5 ⋅cos(t)+ cos(t) ⋅0 = 5cos(t)

d[5t ⋅sin(t)]
dt

=
d[2π f ⋅sin(t)]

dt
=

d[sin2(t)]
dt

=
d[sin(t) ⋅sin(t)]

dt
=

d(2t ⋅ ln(t)]
dt

=

d function1
function2
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dt
=
function2 ⋅ d( function1)

dt
− function1⋅ d( function2)

dt
( function2)2

d t2 −1
t2 +1
"
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dt
=
(t2 +1) ⋅2t − (t2 −1) ⋅2t

(t2 +1)2
=
2t3 + 2t − 2t3 + 2t

(t2 +1)2
=

4t
(t2 +1)2

d[(t2 −1) / (t +1)]
dt

=
d[2π ft / sin(t)]

dt
=

d[tan(t)]
dt

=
d sin(t) / cos(t)[ ]

dt
=

d(2t / ln(t)]
dt

=
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The Chain Rule: 
You know how to take the derivative of 3t2 and sin(t), but how do you take the derivative of a composite function like 
sin(3t2)?  The answer is the chain rule, probably the most commonly utilized differentiation rule used in Calculus and 
Physics.   
 
The key part of this rule is to break the composite function back into two separate functions and then differentiate 
them together.  The first step of this process is to choose the inner function and to define it temporary as u (u is the 
letter used most commonly in Calculus for this task).  So for our example function, sin(3t2), we would define the inner 
function, 3t2, as u.  Now the original composite function becomes sin(u), where u=3t2.   Now we can take the 
derivative of the new function sin(u) with respect to u and the inner function, 3t2 , with respect to t and multiply the 
result to find our answer. 
 
The reason that this works is algebra.  Instead of taking the original composite function’s derivative with respect to t, 
we do it in two parts: 

 

 
Notice that the product of the two derivatives on the right is the same (after you cancel the du terms) as the original 
derivative. 
 
Again remember that we set u=3t2, so the derivative of our composite function, sin(3t2), becomes: 

 

 
The derivatives of each part are: 

 

 

 

 
So the result is 6t�cos(u), or 6t�cos(3t2) after placing our u back into the equation. 
 
Here is another example: what is the derivative of sin4(t)?  This may not appear as a composite function, but we can 
set u=sin(t) so that the original function becomes u4.  The result is as follows: 

 

 

       

 

       

 

      

 
 
 

dx
dt
=
dx
du
⋅
du
dt

dx
dt
=
d[sin(u)]

du
⋅
d(3t2 )
dt

d[sin(u)]
du

= cos(u)

d(3t2 )
dt

= 6t

dx
dt
=
d(u4)
du

⋅
d[sin(t)]

dt
= 4u3 ⋅cos(t) = 4[sin(t)]3 ⋅cos(t) = 4sin3(t)cos(t)

d(2t +1)5

dt
=

d[sin3(t)]
dt

=

d(e2t )
dt

=
d(4e−2t )
dt

=

d[sin(2π ft)]
dt

=
d[2π f sin(2π ft)]

dt
=


